API Reference
Documentation for the iai
package
Index
ggplot2::autoplot.roc_curve
iai::add_julia_processes
iai::all_treatment_combinations
iai::apply
iai::apply_nodes
iai::as.mixeddata
iai::categorical_reward_estimator
iai::cleanup_installation
iai::clone
iai::convert_treatments_to_numeric
iai::decision_path
iai::delete_rich_output_param
iai::equal_propensity_estimator
iai::fit.grid_search
iai::fit.imputation_learner
iai::fit.learner
iai::fit.optimal_feature_selection_learner
iai::fit_cv
iai::fit_predict
iai::fit_predict.categorical_reward_estimator
iai::fit_predict.numeric_reward_estimator
iai::fit_transform
iai::fit_transform_cv
iai::get_best_params
iai::get_classification_label.classification_tree_learner
iai::get_classification_proba.classification_tree_learner
iai::get_depth
iai::get_grid_result_summary
iai::get_learner
iai::get_lower_child
iai::get_machine_id
iai::get_num_fits.glmnetcv_learner
iai::get_num_nodes
iai::get_num_samples
iai::get_params
iai::get_parent
iai::get_policy_treatment_outcome
iai::get_policy_treatment_rank
iai::get_prediction_constant.glmnetcv_learner
iai::get_prediction_constant.optimal_feature_selection_learner
iai::get_prediction_weights.glmnetcv_learner
iai::get_prediction_weights.optimal_feature_selection_learner
iai::get_prescription_treatment_rank
iai::get_regression_constant.prescription_tree_learner
iai::get_regression_constant.regression_tree_learner
iai::get_regression_weights.prescription_tree_learner
iai::get_regression_weights.regression_tree_learner
iai::get_rich_output_params
iai::get_roc_curve_data
iai::get_split_categories
iai::get_split_feature
iai::get_split_threshold
iai::get_split_weights
iai::get_survival_curve
iai::get_survival_curve_data
iai::get_survival_expected_time
iai::get_survival_hazard
iai::get_upper_child
iai::glmnetcv_regressor
iai::grid_search
iai::iai_setup
iai::imputation_learner
iai::impute
iai::impute_cv
iai::install_julia
iai::install_system_image
iai::is_categoric_split
iai::is_hyperplane_split
iai::is_leaf
iai::is_mixed_ordinal_split
iai::is_mixed_parallel_split
iai::is_ordinal_split
iai::is_parallel_split
iai::load_graphviz
iai::mean_imputation_learner
iai::missing_goes_lower
iai::multi_questionnaire.default
iai::multi_questionnaire.grid_search
iai::multi_tree_plot.default
iai::multi_tree_plot.grid_search
iai::numeric_reward_estimator
iai::opt_knn_imputation_learner
iai::opt_svm_imputation_learner
iai::opt_tree_imputation_learner
iai::optimal_feature_selection_classifier
iai::optimal_feature_selection_regressor
iai::optimal_tree_classifier
iai::optimal_tree_policy_maximizer
iai::optimal_tree_policy_minimizer
iai::optimal_tree_prescription_maximizer
iai::optimal_tree_prescription_minimizer
iai::optimal_tree_regressor
iai::optimal_tree_survival_learner
iai::predict.categorical_reward_estimator
iai::predict.glmnetcv_learner
iai::predict.numeric_reward_estimator
iai::predict.optimal_feature_selection_learner
iai::predict.supervised_learner
iai::predict.survival_learner
iai::predict_expected_survival_time.survival_curve
iai::predict_expected_survival_time.survival_learner
iai::predict_hazard.survival_learner
iai::predict_outcomes.policy_learner
iai::predict_outcomes.prescription_learner
iai::predict_proba.classification_learner
iai::predict_treatment_outcome
iai::predict_treatment_rank
iai::print_path
iai::questionnaire
iai::questionnaire.optimal_feature_selection_learner
iai::questionnaire.tree_learner
iai::rand_imputation_learner
iai::random_forest_classifier
iai::random_forest_regressor
iai::read_json
iai::reset_display_label
iai::roc_curve
iai::roc_curve.classification_learner
iai::roc_curve.default
iai::score.categorical_reward_estimator
iai::score.default
iai::score.glmnetcv_learner
iai::score.numeric_reward_estimator
iai::score.optimal_feature_selection_learner
iai::score.supervised_learner
iai::set_display_label
iai::set_julia_seed
iai::set_params
iai::set_rich_output_param
iai::set_threshold
iai::show_in_browser.abstract_visualization
iai::show_in_browser.roc_curve
iai::show_in_browser.tree_learner
iai::show_questionnaire.optimal_feature_selection_learner
iai::show_questionnaire.tree_learner
iai::single_knn_imputation_learner
iai::split_data
iai::transform
iai::tree_plot
iai::variable_importance.learner
iai::variable_importance.optimal_feature_selection_learner
iai::variable_importance.tree_learner
iai::write_booster
iai::write_dot
iai::write_html.abstract_visualization
iai::write_html.roc_curve
iai::write_html.tree_learner
iai::write_json
iai::write_pdf
iai::write_png
iai::write_questionnaire.optimal_feature_selection_learner
iai::write_questionnaire.tree_learner
iai::write_svg
iai::xgboost_classifier
iai::xgboost_regressor
plot.roc_curve
Setup
iai::iai_setup
— Functioniai_setup(...)
Initialize Julia and the IAI package.
This function is called automatically with default parameters the first time any iai
function is used in an R session. If custom parameters for Julia setup are required, this function must be called in every R session before calling other iai
functions.
Arguments
...
: All parameters are passed through toJuliaCall::julia_setup
iai::install_julia
— Functioninstall_julia(version = "latest", prefix = julia_default_install_dir())
Download and install Julia automatically.
Arguments
version
: The version of Julia to install (e.g."1.6.3"
). Defaults to"latest"
, which will install the most recent stable release.prefix
: The directory where Julia will be installed. Defaults to a location determined byrappdirs::user_data_dir
.
iai::install_system_image
— Functioninstall_system_image(
version = "latest",
replace_default = FALSE,
prefix = sysimage_default_install_dir(),
accept_license = FALSE
)
Download and install the IAI system image automatically.
Arguments
version
: The version of the IAI system image to install (e.g."2.1.0"
). Defaults to"latest"
, which will install the most recent release.replace_default
: Whether to replace the default Julia system image with the downloaded IAI system image. Defaults toFALSE
.prefix
: The directory where the IAI system image will be installed. Defaults to a location determined byrappdirs::user_data_dir
.accept_license
: Set toTRUE
to confirm that you agree to the End User License Agreement and skip the interactive confirmation dialog.
iai::cleanup_installation
— Functioncleanup_installation()
Remove all traces of automatic Julia/IAI installation
Removes files created by install_julia
and install_system_image
iai::get_machine_id
— Functionget_machine_id()
Return the machine ID for the current computer.
This ID ties the IAI license file to your machine.
iai::load_graphviz
— Functionload_graphviz()
Loads the Julia Graphviz library to permit certain visualizations.
The library will be installed if not already present.
General Utilities
iai::set_julia_seed
— Functionset_julia_seed(seed)
Set the random seed in Julia
Julia Equivalent: Random.seed!
Arguments
seed
: The seed to set
iai::add_julia_processes
— Functionadd_julia_processes(...)
Add additional Julia worker processes to parallelize workloads
Julia Equivalent: Distributed.addprocs!
For more information, refer to the documentation on parallelization
Arguments
...
: Refer to the Julia documentation for available parameters
iai::get_rich_output_params
— Functionget_rich_output_params()
Return the current global rich output parameter settings
Julia Equivalent: IAI.get_rich_output_params
iai::set_rich_output_param
— Functionset_rich_output_param(key, value)
Sets a global rich output parameter
Julia Equivalent: IAI.set_rich_output_param!
Arguments
key
: The parameter to set.value
: The value to set
iai::delete_rich_output_param
— Functiondelete_rich_output_param(key)
Delete a global rich output parameter
Julia Equivalent: IAI.delete_rich_output_param!
Arguments
key
: The parameter to delete.
Data Preparation
iai::as.mixeddata
— Functionas.mixeddata(values, categorical_levels, ordinal_levels = c())
Convert a vector of values to IAI mixed data format
Julia Equivalent: IAI.make_mixed_data
Arguments
values
: The vector of values to convertcategorical_levels
: The values invalues
to treat as categoric levelsordinal_levels
: (optional) The values invalues
to treat as ordinal levels, in the order supplied
iai::split_data
— Functionsplit_data(task, X, ...)
Split the data into training and test datasets
Julia Equivalent: IAI.split_data
Arguments
task
: The type of problem.X
: The features of the data....
: Other parameters, including zero or more target vectors as required by the problem type. Refer to the Julia documentation for available parameters.
Scoring
iai::score.default
— Functionscore(obj, predictions, truths, ...)
Calculate the score for a set of predictions on the given data
Julia Equivalent: IAI.score
Arguments
obj
: The type of problem.predictions
: The predictions to evaluate.truths
: The true target values for these observations....
: Other parameters, including the criterion. Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
Learners
General learners
iai::fit.learner
— Functionfit(obj, X, ...)
Fits a model to the training data
Julia Equivalent: IAI.fit!
Arguments
obj
: The learner to fit.X
: The features of the data....
: Other parameters, including zero or more target vectors as required by the problem type. Refer to the Julia documentation for available parameters.
iai::variable_importance.learner
— Functionvariable_importance(obj, ...)
Generate a ranking of the variables in a learner according to their importance during training. The results are normalized so that they sum to one.
Julia Equivalent: IAI.variable_importance
Arguments
obj
: The learner to query....
: Refer to the Julia documentation for available parameters.
iai::set_params
— Functionset_params(lnr, ...)
Set all supplied parameters on a learner
Julia Equivalent: IAI.set_params!
Arguments
lnr
: The learner to modify....
: The parameters to set on the learner.
iai::get_params
— Functionget_params(lnr)
Return the value of all parameters on a learner
Julia Equivalent: IAI.get_params
Arguments
lnr
: The learner to query.
iai::clone
— Functionclone(lnr)
Return an unfitted copy of a learner with the same parameters
Julia Equivalent: IAI.clone
Arguments
lnr
: The learner to copy.
iai::read_json
— Functionread_json(filename)
Read in a learner or grid saved in JSON format
Julia Equivalent: IAI.read_json
Arguments
filename
: The location of the JSON file.
iai::write_json
— Functionwrite_json(filename, obj, ...)
Output a learner or grid in JSON format
Julia Equivalent: IAI.write_json
Arguments
filename
: Where to save the output.obj
: The learner or grid to output....
: Refer to the Julia documentation for available parameters.
Supervised learners
iai::predict.supervised_learner
— Functionpredict(obj, X, ...)
Return the predictions made by a supervised learner for each point in the features
Julia Equivalent: IAI.predict
Arguments
obj
: The learner or grid to use for prediction.X
: The features of the data....
: Refer to the Julia documentation for available parameters.
iai::score.supervised_learner
— Functionscore(obj, X, ...)
Calculate the score for a model on the given data
Julia Equivalent: IAI.score
Arguments
obj
: The learner or grid to evaluate.X
: The features of the data....
: Other parameters, including zero or more target vectors as required by the problem type. Refer to the Julia documentation for available parameters.
Classification learners
iai::predict_proba.classification_learner
— Functionpredict_proba(obj, X, ...)
Return the probabilities of class membership predicted by a classification learner for each point in the features
Julia Equivalent: IAI.predict_proba
Arguments
obj
: The learner or grid to use for prediction.X
: The features of the data....
: Additional arguments (unused)
iai::roc_curve
— Functionroc_curve(obj, ...)
Generic function for constructing an ROC curve
Julia Equivalent: IAI.ROCCurve
Arguments
obj
: The object controlling which method is used...
: Arguments depending on the specific method used
iai::roc_curve.classification_learner
— Functionroc_curve(obj, X, y, ...)
Construct an ROC curve using a trained classification learner on the given data
Julia Equivalent: IAI.ROCCurve
Arguments
obj
: The learner or grid to use for prediction.X
: The features of the data.y
: The labels of the data....
: Refer to the Julia documentation for available parameters.
iai::roc_curve.default
— Functionroc_curve(obj, y, positive_label = stop("`positive_label` is required"), ...)
Construct an ROC curve from predicted probabilities and true labels
Julia Equivalent: IAI.ROCCurve
Arguments
obj
: The predicted probabilities for each point in the data.y
: The true labels of the data.positive_label
: The label for which probability is being predicted....
: Additional arguments (unused)
Requires IAI version 2.0 or higher.
iai::get_roc_curve_data
— Functionget_roc_curve_data(curve)
Extract the underlying data from an ROC curve
ROC curves are returned by roc_curve
, e.g. roc_curve.classification_learner
The data is returned as a list with two keys: auc
giving the area-under-the-curve, and coords
containing a vector of lists representing each point on the curve, each with keys fpr
(the false positive rate), tpr
(the true positive rate) and threshold
(the threshold).
Julia Equivalent: IAI.get_roc_curve_data
Arguments
curve
: The curve to query.
Requires IAI version 2.1 or higher.
plot.roc_curve
— Functionplot(x, ...)
Plot an ROC curve
Arguments
x
: The ROC curve to plot...
: Additional arguments (unused)
Requires IAI version 2.1 or higher.
ggplot2::autoplot.roc_curve
— Functionggplot2::autoplot(object, ...)
Construct a ggplot2::ggplot
object plotting the ROC curve
Arguments
object
: The ROC curve to plot...
: Additional arguments (unused)
Requires IAI version 2.1 or higher.
iai::write_html.roc_curve
— Functionwrite_html(filename, obj, ...)
Output an ROC curve as an interactive browser visualization in HTML format
Julia Equivalent: IAI.write_html
Arguments
filename
: Where to save the output.obj
: The curve to output....
: Refer to the Julia documentation for available parameters.
Requires IAI version 1.1 or higher.
iai::show_in_browser.roc_curve
— Functionshow_in_browser(obj, ...)
Show interactive visualization of a roc_curve
in the default browser
Julia Equivalent: IAI.show_in_browser
Arguments
obj
: The curve to visualize....
: Refer to the Julia documentation for available parameters.
Requires IAI version 1.1 or higher.
Survival learners
iai::predict.survival_learner
— Functionpredict(obj, X, t = NULL, ...)
Return the predictions made by a survival learner for each point in the features
Julia Equivalent: IAI.predict
Arguments
obj
: The learner or grid to use for prediction.X
: The features of the data.t
: The time for which to predict survival probability, defaulting to returning the entire survival curve if not supplied...
: Additional arguments (unused)
iai::predict_hazard.survival_learner
— Functionpredict_hazard(obj, X, ...)
Return the fitted hazard coefficient estimate made by a survival learner for each point in the features.
A higher hazard coefficient estimate corresponds to a smaller predicted survival time.
Julia Equivalent: IAI.predict_hazard
Arguments
obj
: The learner or grid to use for prediction.X
: The features of the data....
: Additional arguments (unused)
Requires IAI version 1.2 or higher.
iai::predict_expected_survival_time.survival_learner
— Functionpredict_expected_survival_time(obj, X, ...)
Return the expected survival time estimate made by a survival learner for each point in the features.
Julia Equivalent: IAI.predict_expected_survival_time
Arguments
obj
: The learner or grid to use for prediction.X
: The features of the data....
: Additional arguments (unused)
Requires IAI version 2.0 or higher.
iai::get_survival_curve_data
— Functionget_survival_curve_data(curve)
Extract the underlying data from a survival curve (as returned by predict.survival_learner
or get_survival_curve
)
The data is returned as a list with two keys: times
containing the time for each breakpoint on the curve, and coefs
containing the probability for each breakpoint on the curve.
Julia Equivalent: IAI.get_survival_curve_data
Arguments
curve
: The curve to query.
iai::predict_expected_survival_time.survival_curve
— Functionpredict_expected_survival_time(obj, ...)
Return the expected survival time estimate made by a survival curve (as returned by predict.survival_learner
or get_survival_curve
)
Julia Equivalent: IAI.predict_expected_survival_time
Arguments
obj
: The survival curve to use for prediction....
: Additional arguments (unused)
Requires IAI version 2.2 or higher.
Prescription learners
iai::predict_outcomes.prescription_learner
— Functionpredict_outcomes(obj, X, ...)
Return the predicted outcome for each treatment made by a prescription learner for each point in the features
Julia Equivalent: IAI.predict_outcomes
Arguments
obj
: The learner or grid to use for prediction.X
: The features of the data....
: Additional arguments (unused)
Policy learners
iai::predict_outcomes.policy_learner
— Functionpredict_outcomes(obj, X, rewards, ...)
Return the predicted outcome for each treatment made by a policy learner for each point in the features
Julia Equivalent: IAI.predict_outcomes
Arguments
obj
: The learner or grid to use for prediction.X
: The features of the data.rewards
: The estimated reward matrix for the data....
: Additional arguments (unused)
Requires IAI version 2.0 or higher
iai::predict_treatment_rank
— Functionpredict_treatment_rank(lnr, X)
Return the treatments in ranked order of effectiveness for each point in the features
Julia Equivalent: IAI.predict_treatment_rank
Arguments
lnr
: The learner or grid to use for prediction.X
: The features of the data.
Requires IAI version 2.1 or higher.
iai::predict_treatment_outcome
— Functionpredict_treatment_outcome(lnr, X)
Return the estimated quality of each treatment in the trained model of the learner for each point in the features
Julia Equivalent: IAI.predict_treatment_outcome
Arguments
lnr
: The learner or grid to use for prediction.X
: The features of the data.
Requires IAI version 2.1 or higher.
Imputation learners
iai::fit.imputation_learner
— Functionfit(obj, X, ...)
Fits an imputation learner to the training data.
Additional keyword arguments are available for fitting imputation learners - please refer to the Julia documentation.
Julia Equivalent: IAI.fit!
Arguments
obj
: The learner or grid to fit.X
: The features of the data....
: Refer to the Julia documentation for available parameters.
iai::fit_transform
— Functionfit_transform(lnr, X, ...)
Fit an imputation model using the given features and impute the missing values in these features
Similar to calling fit.imputation_learner
followed by transform
Julia Equivalent: IAI.fit_transform!
Arguments
lnr
: The learner or grid to use for imputationX
: The features of the data....
: Refer to the Julia documentation for available parameters.
iai::transform
— Functiontransform(lnr, X)
Impute missing values in a dataframe using a fitted imputation model
Julia Equivalent: IAI.transform
Arguments
lnr
: The learner or grid to use for imputationX
: The features of the data.
Visualization
iai::write_html.abstract_visualization
— Functionwrite_html(filename, obj, ...)
Output an object as an interactive browser visualization in HTML format
Julia Equivalent: IAI.write_html
Arguments
filename
: Where to save the output.obj
: The object to output....
: Refer to the Julia documentation for available parameters.
iai::show_in_browser.abstract_visualization
— Functionshow_in_browser(obj, ...)
Show interactive visualization of an object in the default browser
Julia Equivalent: IAI.show_in_browser
Arguments
obj
: The object to visualize....
: Refer to the Julia documentation for available parameters.
iai::questionnaire
— Functionquestionnaire(obj, ...)
Generic function for constructing an interactive questionnaire
Julia Equivalent: IAI.Questionnaire
Arguments
obj
: The object controlling which method is used...
: Arguments depending on the specific method used
iai::multi_questionnaire.default
— Functionmulti_questionnaire(obj, ...)
Construct an interactive questionnaire from multiple specified learners
Refer to the documentation on advanced tree visualization for more information.
Julia Equivalent: IAI.MultiQuestionnaire
Arguments
obj
: The questions to visualize. Refer to the Julia documentation on multi-learner visualizations for more information....
: Additional arguments (unused)
Requires IAI version 1.1 or higher.
iai::multi_questionnaire.grid_search
— Functionmulti_questionnaire(obj, ...)
Construct an interactive tree questionnaire using multiple learners from the results of a grid search
Julia Equivalent: IAI.MultiQuestionnaire
Arguments
obj
: The grid to visualize...
: Additional arguments (unused)
Requires IAI version 2.0 or higher.
Grid Search
iai::grid_search
— Functiongrid_search(lnr, ...)
Controls grid search over parameter combinations
Julia Equivalent: IAI.GridSearch
Arguments
lnr
: The learner to use when validating....
: The parameters to validate over.
iai::fit.grid_search
— Functionfit(obj, X, ...)
Fits a grid_search
to the training data
Julia Equivalent: IAI.fit!
Arguments
obj
: The grid search to fit.X
: The features of the data....
: Other parameters, including zero or more target vectors as required by the problem type. Refer to the Julia documentation for available parameters.
iai::fit_cv
— Functionfit_cv(grid, X, ...)
Fits a grid search to the training data with cross-validation
Julia Equivalent: IAI.fit_cv!
Arguments
grid
: The grid to fit.X
: The features of the data....
: Other parameters, including zero or more target vectors as required by the problem type. Refer to the Julia documentation for available parameters.
iai::fit_transform_cv
— Functionfit_transform_cv(grid, X, ...)
Train a grid using cross-validation with features and impute all missing values in these features
Julia Equivalent: IAI.fit_transform_cv!
Arguments
grid
: The grid to use for imputationX
: The features of the data....
: Refer to the Julia documentation for available parameters.
iai::get_learner
— Functionget_learner(grid)
Return the fitted learner using the best parameter combination from a grid
Julia Equivalent: IAI.get_learner
Arguments
grid
: The grid to query.
iai::get_best_params
— Functionget_best_params(grid)
Return the best parameter combination from a grid
Julia Equivalent: IAI.get_best_params
Arguments
grid
: The grid search to query.
iai::get_grid_result_summary
— Functionget_grid_result_summary(grid)
Return a summary of the results from the grid search
Julia Equivalent: IAI.get_grid_result_summary
Arguments
grid
: The grid search to query.
Tree Learners
General tree learners
iai::apply
— Functionapply(lnr, X)
Return the leaf index in a tree model into which each point in the features falls
Julia Equivalent: IAI.apply
Arguments
lnr
: The learner or grid to query.X
: The features of the data.
iai::apply_nodes
— Functionapply_nodes(lnr, X)
Return the indices of the points in the features that fall into each node of a trained tree model
Julia Equivalent: IAI.apply_nodes
Arguments
lnr
: The learner or grid to query.X
: The features of the data.
iai::decision_path
— Functiondecision_path(lnr, X)
Return a matrix where entry (i, j)
is true if the i
th point in the features passes through the j
th node in a trained tree model.
Julia Equivalent: IAI.decision_path
Arguments
lnr
: The learner or grid to query.X
: The features of the data.
iai::print_path
— Functionprint_path(lnr, X, ...)
Print the decision path through the learner for each sample in the features
Julia Equivalent: IAI.print_path
Arguments
lnr
: The learner or grid to query.X
: The features of the data....
: Refer to the Julia documentation for available parameters.
iai::variable_importance.tree_learner
— Functionvariable_importance(obj, ...)
Generate a ranking of the variables in a tree learner according to their importance during training. The results are normalized so that they sum to one.
Julia Equivalent: IAI.variable_importance
Arguments
obj
: The learner to query....
: Refer to the Julia documentation for available parameters.
iai::get_num_nodes
— Functionget_num_nodes(lnr)
Return the number of nodes in a trained learner
Julia Equivalent: IAI.get_num_nodes
Arguments
lnr
: The learner to query.
iai::get_depth
— Functionget_depth(lnr, node_index)
Get the depth of a node of a tree
Julia Equivalent: IAI.get_depth
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::get_parent
— Functionget_parent(lnr, node_index)
Get the index of the parent node at a node of a tree
Julia Equivalent: IAI.get_parent
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::get_lower_child
— Functionget_lower_child(lnr, node_index)
Get the index of the lower child at a split node of a tree
Julia Equivalent: IAI.get_lower_child
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::get_upper_child
— Functionget_upper_child(lnr, node_index)
Get the index of the upper child at a split node of a tree
Julia Equivalent: IAI.get_upper_child
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::get_num_samples
— Functionget_num_samples(lnr, node_index)
Get the number of training points contained in a node of a tree
Julia Equivalent: IAI.get_num_samples
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::is_categoric_split
— Functionis_categoric_split(lnr, node_index)
Check if a node of a tree applies a categoric split
Julia Equivalent: IAI.is_categoric_split
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::is_hyperplane_split
— Functionis_hyperplane_split(lnr, node_index)
Check if a node of a tree applies a hyperplane split
Julia Equivalent: IAI.is_hyperplane_split
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::is_leaf
— Functionis_leaf(lnr, node_index)
Check if a node of a tree is a leaf
Julia Equivalent: IAI.is_leaf
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::is_mixed_ordinal_split
— Functionis_mixed_ordinal_split(lnr, node_index)
Check if a node of a tree applies a mixed ordinal/categoric split
Julia Equivalent: IAI.is_mixed_ordinal_split
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::is_mixed_parallel_split
— Functionis_mixed_parallel_split(lnr, node_index)
Check if a node of a tree applies a mixed parallel/categoric split
Julia Equivalent: IAI.is_mixed_parallel_split
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::is_ordinal_split
— Functionis_ordinal_split(lnr, node_index)
Check if a node of a tree applies a ordinal split
Julia Equivalent: IAI.is_ordinal_split
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::is_parallel_split
— Functionis_parallel_split(lnr, node_index)
Check if a node of a tree applies a parallel split
Julia Equivalent: IAI.is_parallel_split
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::get_split_categories
— Functionget_split_categories(lnr, node_index)
Return the categoric/ordinal information used in the split at a node of a tree
Julia Equivalent: IAI.get_split_categories
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::get_split_feature
— Functionget_split_feature(lnr, node_index)
Return the feature used in the split at a node of a tree
Julia Equivalent: IAI.get_split_feature
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::get_split_threshold
— Functionget_split_threshold(lnr, node_index)
Return the threshold used in the split at a node of a tree
Julia Equivalent: IAI.get_split_threshold
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::get_split_weights
— Functionget_split_weights(lnr, node_index)
Return the weights for numeric and categoric features used in the hyperplane split at a node of a tree
Julia Equivalent: IAI.get_split_weights
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
iai::missing_goes_lower
— Functionmissing_goes_lower(lnr, node_index)
Check if points with missing values go to the lower child at a split node of of a tree
Julia Equivalent: IAI.missing_goes_lower
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query.
Classification tree learners
iai::get_classification_label.classification_tree_learner
— Functionget_classification_label(obj, node_index, ...)
Return the predicted label at a node of a tree
Julia Equivalent: IAI.get_classification_label
Arguments
obj
: The learner to query.node_index
: The node in the tree to query....
: Refer to the Julia documentation for available parameters.
iai::get_classification_proba.classification_tree_learner
— Functionget_classification_proba(obj, node_index, ...)
Return the predicted probabilities of class membership at a node of a tree
Julia Equivalent: IAI.get_classification_proba
Arguments
obj
: The learner to query.node_index
: The node in the tree to query....
: Refer to the Julia documentation for available parameters.
iai::set_threshold
— Functionset_threshold(lnr, label, threshold, ...)
For a binary classification problem, update the the predicted labels in the leaves of the learner to predict a label only if the predicted probability is at least the specified threshold.
Julia Equivalent: IAI.set_threshold!
Arguments
lnr
: The learner to modify.label
: The referenced label.threshold
: The probability threshold above whichlabel
will be be predicted....
: Refer to the Julia documentation for available parameters.
iai::set_display_label
— Functionset_display_label(lnr, display_label)
Show the probability of a specified label when visualizing a learner
Julia Equivalent: IAI.set_display_label!
Arguments
lnr
: The learner to modify.display_label
: The label for which to show probabilities.
iai::reset_display_label
— Functionreset_display_label(lnr)
Reset the predicted probability displayed to be that of the predicted label when visualizing a learner
Julia Equivalent: IAI.reset_display_label!
Arguments
lnr
: The learner to modify.
Regression tree learners
iai::get_regression_constant.regression_tree_learner
— Functionget_regression_constant(obj, node_index, ...)
Return the constant term in the linear regression prediction at a node of a regression tree
Julia Equivalent: IAI.get_regression_constant
Arguments
obj
: The learner to query.node_index
: The node in the tree to query....
: Refer to the Julia documentation for available parameters.
iai::get_regression_weights.regression_tree_learner
— Functionget_regression_weights(obj, node_index, ...)
Return the weights for each feature in the linear regression prediction at a node of a regression tree
Julia Equivalent: IAI.get_regression_weights
Arguments
obj
: The learner to query.node_index
: The node in the tree to query....
: Refer to the Julia documentation for available parameters.
Survival tree learners
iai::get_survival_curve
— Functionget_survival_curve(lnr, node_index, ...)
Return the survival curve at a node of a tree
Julia Equivalent: IAI.get_survival_curve
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query....
: Refer to the Julia documentation for available parameters.
iai::get_survival_expected_time
— Functionget_survival_expected_time(lnr, node_index, ...)
Return the predicted expected survival time at a node of a tree
Julia Equivalent: IAI.get_survival_expected_time
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query....
: Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
iai::get_survival_hazard
— Functionget_survival_hazard(lnr, node_index, ...)
Return the predicted hazard ratio at a node of a tree
Julia Equivalent: IAI.get_survival_hazard
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query....
: Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
Prescription tree learners
iai::get_prescription_treatment_rank
— Functionget_prescription_treatment_rank(lnr, node_index, ...)
Return the treatments ordered from most effective to least effective at a node of a tree
Julia Equivalent: IAI.get_prescription_treatment_rank
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query....
: Refer to the Julia documentation for available parameters.
iai::get_regression_constant.prescription_tree_learner
— Functionget_regression_constant(obj, node_index, treatment, ...)
Return the constant term in the linear regression prediction at a node of a prescription tree
Julia Equivalent: IAI.get_regression_constant
Arguments
obj
: The learner to query.node_index
: The node in the tree to query.treatment
: The treatment to query....
: Refer to the Julia documentation for available parameters.
iai::get_regression_weights.prescription_tree_learner
— Functionget_regression_weights(obj, node_index, treatment, ...)
Return the weights for each feature in the linear regression prediction at a node of a prescription tree
Julia Equivalent: IAI.get_regression_weights
Arguments
obj
: The learner to query.node_index
: The node in the tree to query.treatment
: The treatment to query....
: Refer to the Julia documentation for available parameters.
Policy tree learners
iai::get_policy_treatment_rank
— Functionget_policy_treatment_rank(lnr, node_index, ...)
Return the treatments ordered from most effective to least effective at a node of a tree
Julia Equivalent: IAI.get_policy_treatment_rank
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query....
: Refer to the Julia documentation for available parameters.
Requires IAI version 2.0 or higher.
iai::get_policy_treatment_outcome
— Functionget_policy_treatment_outcome(lnr, node_index, ...)
Return the quality of the treatments at a node of a tree
Julia Equivalent: IAI.get_policy_treatment_outcome
Arguments
lnr
: The learner to query.node_index
: The node in the tree to query....
: Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
Tree learner visualization
iai::write_png
— Functionwrite_png(filename, lnr, ...)
Output a learner as a PNG image
Before using this function, either run load_graphviz
or ensure that Graphviz is installed and on the system PATH
Julia Equivalent: IAI.write_png
Arguments
filename
: Where to save the output.lnr
: The learner to output....
: Refer to the Julia documentation for available parameters.
iai::write_pdf
— Functionwrite_pdf(filename, lnr, ...)
Output a learner as a PDF image
Before using this function, either run load_graphviz
or ensure that Graphviz is installed and on the system PATH
Julia Equivalent: IAI.write_pdf
Arguments
filename
: Where to save the output.lnr
: The learner to output....
: Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
iai::write_svg
— Functionwrite_svg(filename, lnr, ...)
Output a learner as a SVG image
Before using this function, either run load_graphviz
or ensure that Graphviz is installed and on the system PATH
Julia Equivalent: IAI.write_svg
Arguments
filename
: Where to save the output.lnr
: The learner to output....
: Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
iai::write_dot
— Functionwrite_dot(filename, lnr, ...)
Output a learner in .dot format
Julia Equivalent: IAI.write_dot
Arguments
filename
: Where to save the output.lnr
: The learner to output....
: Refer to the Julia documentation for available parameters.
iai::tree_plot
— Functiontree_plot(lnr, ...)
Specify an interactive tree visualization of a tree learner
Julia Equivalent: IAI.TreePlot
Arguments
lnr
: The learner to visualize....
: Refer to the Julia documentation on advanced tree visualization for available parameters.
Requires IAI version 1.1 or higher.
iai::write_html.tree_learner
— Functionwrite_html(filename, obj, ...)
Output a tree learner as an interactive browser visualization in HTML format
Julia Equivalent: IAI.write_html
Arguments
filename
: Where to save the output.obj
: The learner or grid to output....
: Refer to the Julia documentation for available parameters.
Outputting a grid search requires IAI version 2.0 or higher.
iai::show_in_browser.tree_learner
— Functionshow_in_browser(obj, ...)
Show interactive tree visualization of a tree learner in the default browser
Julia Equivalent: IAI.show_in_browser
Arguments
obj
: The learner or grid to visualize....
: Refer to the Julia documentation for available parameters.
Showing a grid search requires IAI version 2.0 or higher.
iai::questionnaire.tree_learner
— Functionquestionnaire(obj, ...)
Specify an interactive questionnaire of a tree learner
Julia Equivalent: IAI.Questionnaire
Arguments
obj
: The learner to visualize....
: Refer to the Julia documentation for available parameters.
Requires IAI version 1.1 or higher.
iai::write_questionnaire.tree_learner
— Functionwrite_questionnaire(filename, obj, ...)
Output a tree learner as an interactive questionnaire in HTML format
Julia Equivalent: IAI.write_questionnaire
Arguments
filename
: Where to save the output.obj
: The learner or grid to output....
: Refer to the Julia documentation for available parameters.
Outputting a grid search requires IAI version 2.0 or higher.
iai::show_questionnaire.tree_learner
— Functionshow_questionnaire(obj, ...)
Show an interactive questionnaire based on a tree learner in default browser
Julia Equivalent: IAI.show_questionnaire
Arguments
obj
: The learner or grid to visualize....
: Refer to the Julia documentation for available parameters.
Showing a grid search requires IAI version 2.0 or higher.
iai::multi_tree_plot.default
— Functionmulti_tree_plot(obj, ...)
Construct an interactive tree visualization of multiple tree learners as specified by questions
Refer to the documentation on advanced tree visualization for more information.
Julia Equivalent: IAI.MultiTreePlot
Arguments
obj
: The questions to visualize. Refer to the Julia documentation on multi-learner visualizations for more information....
: Additional arguments (unused)
Requires IAI version 1.1 or higher.
iai::multi_tree_plot.grid_search
— Functionmulti_tree_plot(obj, ...)
Construct an interactive tree visualization of multiple tree learners from the results of a grid search
Julia Equivalent: IAI.MultiTreePlot
Arguments
obj
: The grid to visualize...
: Additional arguments (unused)
Requires IAI version 2.0 or higher.
Optimal Trees
iai::optimal_tree_classifier
— Functionoptimal_tree_classifier(...)
Learner for training Optimal Classification Trees
Julia Equivalent: IAI.OptimalTreeClassifier
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
iai::optimal_tree_regressor
— Functionoptimal_tree_regressor(...)
Learner for training Optimal Regression Trees
Julia Equivalent: IAI.OptimalTreeRegressor
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
iai::optimal_tree_survival_learner
— Functionoptimal_tree_survival_learner(...)
Learner for training Optimal Survival Trees
Julia Equivalent: IAI.OptimalTreeSurvivalLearner
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
iai::optimal_tree_prescription_minimizer
— Functionoptimal_tree_prescription_minimizer(...)
Learner for training Optimal Prescriptive Trees where the prescriptions should aim to minimize outcomes
Julia Equivalent: IAI.OptimalTreePrescriptionMinimizer
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
iai::optimal_tree_prescription_maximizer
— Functionoptimal_tree_prescription_maximizer(...)
Learner for training Optimal Prescriptive Trees where the prescriptions should aim to maximize outcomes
Julia Equivalent: IAI.OptimalTreePrescriptionMaximizer
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
iai::optimal_tree_policy_minimizer
— Functionoptimal_tree_policy_minimizer(...)
Learner for training Optimal Policy Trees where the policy should aim to minimize outcomes
Julia Equivalent: IAI.OptimalTreePolicyMinimizer
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
Requires IAI version 2.0 or higher.
iai::optimal_tree_policy_maximizer
— Functionoptimal_tree_policy_maximizer(...)
Learner for training Optimal Policy Trees where the policy should aim to maximize outcomes
Julia Equivalent: IAI.OptimalTreePolicyMaximizer
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
Requires IAI version 2.0 or higher.
OptImpute
iai::impute
— Functionimpute(X, ...)
Impute missing values using either a specified method or through validation
Julia Equivalent: IAI.impute
This function was deprecated in iai 1.7.0. This is for consistency with the IAI v3.0.0 Julia release.
Arguments
X
: The dataframe in which to impute missing values....
: Refer to the Julia documentation for available parameters.
iai::impute_cv
— Functionimpute_cv(X, ...)
Impute missing values using cross validation
Julia Equivalent: IAI.impute_cv
This function was deprecated in iai 1.7.0. This is for consistency with the IAI v3.0.0 Julia release.
Arguments
X
: The dataframe in which to impute missing values....
: Refer to the Julia documentation for available parameters.
iai::imputation_learner
— Functionimputation_learner(method = "opt_knn", ...)
Generic learner for imputing missing values
Julia Equivalent: IAI.ImputationLearner
Arguments
method
: (optional) Specifies the imputation method to use....
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
iai::opt_knn_imputation_learner
— Functionopt_knn_imputation_learner(...)
Learner for conducting optimal k-NN imputation
Julia Equivalent: IAI.OptKNNImputationLearner
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
iai::opt_svm_imputation_learner
— Functionopt_svm_imputation_learner(...)
Learner for conducting optimal SVM imputation
Julia Equivalent: IAI.OptSVMImputationLearner
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
iai::opt_tree_imputation_learner
— Functionopt_tree_imputation_learner(...)
Learner for conducting optimal tree-based imputation
Julia Equivalent: IAI.OptTreeImputationLearner
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
iai::single_knn_imputation_learner
— Functionsingle_knn_imputation_learner(...)
Learner for conducting heuristic k-NN imputation
Julia Equivalent: IAI.SingleKNNImputationLearner
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
iai::mean_imputation_learner
— Functionmean_imputation_learner(...)
Learner for conducting mean imputation
Julia Equivalent: IAI.MeanImputationLearner
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
iai::rand_imputation_learner
— Functionrand_imputation_learner(...)
Learner for conducting random imputation
Julia Equivalent: IAI.RandImputationLearner
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
Optimal Feature Selection
iai::optimal_feature_selection_classifier
— Functionoptimal_feature_selection_classifier(...)
Learner for conducting Optimal Feature Selection on classification problems
Julia Equivalent: IAI.OptimalFeatureSelectionClassifier
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
Requires IAI version 1.1 or higher.
iai::optimal_feature_selection_regressor
— Functionoptimal_feature_selection_regressor(...)
Learner for conducting Optimal Feature Selection on regression problems
Julia Equivalent: IAI.OptimalFeatureSelectionRegressor
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
Requires IAI version 1.1 or higher.
iai::fit.optimal_feature_selection_learner
— Functionfit(obj, X, ...)
Fits an Optimal Feature Selection learner to the training data
When the coordinated_sparsity
parameter of the learner is TRUE
, additional keyword arguments are required - please refer to the Julia documentation.
Julia Equivalent: IAI.fit!
Arguments
obj
: The learner or grid to fit.X
: The features of the data....
: Other parameters, including zero or more target vectors as required by the problem type. Refer to the Julia documentation for available parameters.
Requires IAI version 1.1 or higher.
iai::predict.optimal_feature_selection_learner
— Functionpredict(obj, X, fit_index = NULL, ...)
Return the predictions made by an Optimal Feature Selection learner for each point in the features
Julia Equivalent: IAI.predict
Arguments
obj
: The learner or grid to use for prediction.X
: The features of the data.fit_index
: The index of the cluster to use for prediction, if thecoordinated_sparsity
parameter on the learner isTRUE
....
: Refer to the Julia documentation for available parameters.
Requires IAI version 1.1 or higher.
iai::score.optimal_feature_selection_learner
— Functionscore(obj, X, ...)
Calculate the score for an Optimal Feature Selection learner on the given data
Julia Equivalent: IAI.score
Arguments
obj
: The learner or grid to evaluate.X
: The features of the data....
: Other parameters, including zero or more target vectors as required by the problem type. If thecoordinated_sparsity
parameter on the learner isTRUE
, thenfit_index
must be used to specify which cluster should be used. Refer to the Julia documentation for available parameters.
Requires IAI version 1.1 or higher.
iai::variable_importance.optimal_feature_selection_learner
— Functionvariable_importance(obj, fit_index = NULL, ...)
Generate a ranking of the variables in an Optimal Feature Selection learner according to their importance during training. The results are normalized so that they sum to one.
Julia Equivalent: IAI.variable_importance
Arguments
obj
: The learner to query.fit_index
: The index of the cluster to use for prediction, if thecoordinated_sparsity
parameter on the learner isTRUE
....
: Refer to the Julia documentation for available parameters.
Requires IAI version 1.1 or higher.
iai::get_prediction_constant.optimal_feature_selection_learner
— Functionget_prediction_constant(obj, fit_index = NULL, ...)
Return the constant term in the prediction in a trained Optimal Feature Selection learner
Julia Equivalent: IAI.get_prediction_constant
Arguments
obj
: The learner to query.fit_index
: The index of the cluster to use for prediction, if thecoordinated_sparsity
parameter on the learner isTRUE
....
: Additional arguments (unused)
Requires IAI version 1.1 or higher.
iai::get_prediction_weights.optimal_feature_selection_learner
— Functionget_prediction_weights(obj, fit_index = NULL, ...)
Return the weights for numeric and categoric features used for prediction in a trained Optimal Feature Selection learner
Julia Equivalent: IAI.get_prediction_weights
Arguments
obj
: The learner to query.fit_index
: The index of the cluster to use for prediction, if thecoordinated_sparsity
parameter on the learner isTRUE
....
: Additional arguments (unused)
Requires IAI version 1.1 or higher.
iai::questionnaire.optimal_feature_selection_learner
— Functionquestionnaire(obj, ...)
Specify an interactive questionnaire of an Optimal Feature Selection learner
Julia Equivalent: IAI.Questionnaire
Arguments
obj
: The learner to visualize....
: Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
iai::write_questionnaire.optimal_feature_selection_learner
— Functionwrite_questionnaire(filename, obj, ...)
Output an Optimal Feature Selection learner as an interactive questionnaire in HTML format
Julia Equivalent: IAI.write_questionnaire
Arguments
filename
: Where to save the output.obj
: The learner or grid to output....
: Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
iai::show_questionnaire.optimal_feature_selection_learner
— Functionshow_questionnaire(obj, ...)
Show an interactive questionnaire based on an Optimal Feature Selection learner in default browser
Julia Equivalent: IAI.show_questionnaire
Arguments
obj
: The learner or grid to visualize....
: Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
Reward Estimation
iai::fit_predict
— Functionfit_predict(obj, ...)
Generic function for fitting a reward estimator on features, treatments and returning predicted counterfactual rewards and scores of the internal estimators.
Julia Equivalent: IAI.fit_predict!
Arguments
obj
: The object controlling which method is used...
: Arguments depending on the specific method used
Categorical Treatments
iai::categorical_reward_estimator
— Functioncategorical_reward_estimator(...)
Learner for conducting reward estimation with categorical treatments
This function was deprecated in iai 1.6.0, and [categoricalclassificationrewardestimator()] or [categoricalclassificationrewardestimator()] should be used instead.
This deprecation is no longer supported as of the IAI v3 release.
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
Requires IAI version 2.0, 2.1 or 2.2.
iai::fit_predict.categorical_reward_estimator
— Functionfit_predict(obj, X, treatments, ...)
Fit a categorical reward estimator on features, treatments and outcomes and return predicted counterfactual rewards for each observation, under each treatment observed in the data, as well as the scores of the internal estimators.
Julia Equivalent: IAI.fit_predict!
Arguments
obj
: The learner or grid to use for estimationX
: The features of the data.treatments
: The treatment applied to each point in the data....
: Additional arguments depending on the treatment and outcome types. Refer to the Julia documentation for more information.
Requires IAI version 2.0 or higher.
iai::predict.categorical_reward_estimator
— Functionpredict(obj, X, ...)
Return counterfactual rewards estimated by a categorical reward estimator for each observation in the supplied data
Julia Equivalent: IAI.predict
Arguments
obj
: The learner or grid to use for estimationX
: The features of the data....
: Additional arguments depending on the treatment and outcome types. Refer to the Julia documentation for more information.
Requires IAI version 2.0 or higher.
iai::score.categorical_reward_estimator
— Functionscore(obj, X, ...)
Calculate the scores for a categorical reward estimator on the given data
Julia Equivalent: IAI.score
Arguments
obj
: The learner or grid to evaluate.X
: The features of the data....
: Other parameters, including zero or more target vectors as required by the problem type. Refer to the Julia documentation for other available parameters.
Requires IAI version 2.1 or higher.
iai::equal_propensity_estimator
— Functionequal_propensity_estimator(...)
Learner that estimates equal propensity for all treatments.
For use with data from randomized experiments where treatments are known to be randomly assigned.
Julia Equivalent: IAI.EqualPropensityEstimator
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
Numeric Treatments
iai::numeric_reward_estimator
— Functionnumeric_reward_estimator(...)
Learner for conducting reward estimation with numeric treatments
This function was deprecated in iai 1.6.0, and [numericclassificationrewardestimator()] or [numericclassificationrewardestimator()] should be used instead.
This deprecation is no longer supported as of the IAI v3 release.
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or 2.2.
iai::fit_predict.numeric_reward_estimator
— Functionfit_predict(obj, X, treatments, ...)
Fit a numeric reward estimator on features, treatments and outcomes and return predicted counterfactual rewards for each observation, under each treatment candidate, as well as the scores of the internal estimators.
Julia Equivalent: IAI.fit_predict!
Arguments
obj
: The learner or grid to use for estimationX
: The features of the data.treatments
: The treatment applied to each point in the data....
: Additional arguments depending on the treatment and outcome types. Refer to the Julia documentation for more information.
Requires IAI version 2.1 or higher.
iai::predict.numeric_reward_estimator
— Functionpredict(obj, X, ...)
Return counterfactual rewards estimated by a numeric reward estimator for each observation in the supplied data
Julia Equivalent: IAI.predict
Arguments
obj
: The learner or grid to use for estimationX
: The features of the data....
: Additional arguments depending on the treatment and outcome types. Refer to the Julia documentation for more information.
Requires IAI version 2.1 or higher.
iai::score.numeric_reward_estimator
— Functionscore(obj, X, ...)
Calculate the scores for a numeric reward estimator on the given data
Julia Equivalent: IAI.score
Arguments
obj
: The learner or grid to evaluate.X
: The features of the data....
: Other parameters, including zero or more target vectors as required by the problem type. Refer to the Julia documentation for other available parameters.
Requires IAI version 2.1 or higher.
iai::all_treatment_combinations
— Functionall_treatment_combinations(...)
Return a dataframe containing all treatment combinations of one or more treatment vectors, ready for use as treatment candidates in fit_predict!
or predict
Julia Equivalent: IAI.all_treatment_combinations
Arguments
...
: A vector of possible options for each treatment
iai::convert_treatments_to_numeric
— Functionconvert_treatments_to_numeric(treatments)
Convert treatments
from symbol/string format into numeric values.
Julia Equivalent: IAI.convert_treatments_to_numeric
Arguments
treatments
: The treatments to convert
Heuristics
Random Forests
iai::random_forest_classifier
— Functionrandom_forest_classifier(...)
Learner for training random forests for classification problems
Julia Equivalent: IAI.RandomForestClassifier
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
iai::random_forest_regressor
— Functionrandom_forest_regressor(...)
Learner for training random forests for regression problems
Julia Equivalent: IAI.RandomForestRegressor
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
XGBoost
iai::xgboost_classifier
— Functionxgboost_classifier(...)
Learner for training XGBoost models for classification problems
Julia Equivalent: IAI.XGBoostClassifier
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
iai::xgboost_regressor
— Functionxgboost_regressor(...)
Learner for training XGBoost models for regression problems
Julia Equivalent: IAI.XGBoostRegressor
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
iai::write_booster
— Functionwrite_booster(filename, lnr)
Write the internal booster saved in the learner to file
Julia Equivalent: IAI.write_booster
Arguments
filename
: Where to save the output.lnr
: The XGBoost learner with the booster to output.
Requires IAI version 2.1 or higher.
GLMNet
iai::glmnetcv_regressor
— Functionglmnetcv_regressor(...)
Learner for training GLMNet models for regression problems with cross-validation
Julia Equivalent: IAI.GLMNetCVRegressor
Arguments
...
: Use keyword arguments to set parameters on the resulting learner. Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
iai::predict.glmnetcv_learner
— Functionpredict(obj, X, fit_index = NULL, ...)
Return the predictions made by a GLMNet learner for each point in the features
Julia Equivalent: IAI.predict
Arguments
obj
: The learner or grid to use for prediction.X
: The features of the data.fit_index
: The index of the fit in the path to use for prediction, defaulting to the best fit if not supplied....
: Refer to the Julia documentation for available parameters.
Requires IAI version 2.1 or higher.
iai::score.glmnetcv_learner
— Functionscore(obj, X, ...)
Calculate the score for a GLMNet learner on the given data
Julia Equivalent: IAI.score
Arguments
obj
: The learner or grid to evaluate.X
: The features of the data....
: Other parameters, including zero or more target vectors as required by the problem type.fit_index
can be used to specify the index of the fit in the path to use for prediction, defaulting to the best fit if not supplied. Refer to the Julia documentation for other available parameters.
Requires IAI version 2.1 or higher.
iai::get_prediction_constant.glmnetcv_learner
— Functionget_prediction_constant(obj, fit_index = NULL, ...)
Return the constant term in the prediction in a trained GLMNet learner
Julia Equivalent: IAI.get_prediction_constant
Arguments
obj
: The learner to query.fit_index
: The index of the fit in the path to use for prediction, defaulting to the best fit if not supplied....
: Additional arguments (unused)
Requires IAI version 2.1 or higher.
iai::get_prediction_weights.glmnetcv_learner
— Functionget_prediction_weights(obj, fit_index = NULL, ...)
Return the weights for numeric and categoric features used for prediction in a trained GLMNet learner
Julia Equivalent: IAI.get_prediction_weights
Arguments
obj
: The learner to query.fit_index
: The index of the fit in the path to use for prediction, defaulting to the best fit if not supplied....
: Additional arguments (unused)
Requires IAI version 2.1 or higher.
iai::get_num_fits.glmnetcv_learner
— Functionget_num_fits(obj, ...)
Return the number of fits along the path in a trained GLMNet learner
Julia Equivalent: IAI.get_num_fits
Arguments
obj
: The GLMNet learner to query....
: Additional arguments (unused)
Requires IAI version 2.1 or higher.