Quick Start Guide: Optimal Imputation
This is a Python version of the corresponding OptImpute quick start guide.
On this page we show examples of how to use the imputation methods of OptImpute on the echocardiogram dataset:
import pandas as pd
df = pd.read_csv(
"echocardiogram.data",
na_values="?",
header=None,
names=['survival', 'alive', 'age_at_heart_attack', 'pe', 'fs', 'epss',
'lvdd', 'wm_score', 'wm_index', 'mult', 'name', 'group',
'alive_at_one'],
)
df.name = df.name.astype('category')
survival alive age_at_heart_attack ... name group alive_at_one
0 11.0 0.0 71.0 ... name 1.0 0.0
1 19.0 0.0 72.0 ... name 1.0 0.0
2 16.0 0.0 55.0 ... name 1.0 0.0
3 57.0 0.0 60.0 ... name 1.0 0.0
4 19.0 1.0 57.0 ... name 1.0 0.0
5 26.0 0.0 68.0 ... name 1.0 0.0
6 13.0 0.0 62.0 ... name 1.0 0.0
.. ... ... ... ... ... ... ...
125 17.0 0.0 NaN ... name NaN NaN
126 21.0 0.0 61.0 ... name NaN NaN
127 7.5 1.0 64.0 ... name NaN NaN
128 41.0 0.0 64.0 ... name NaN NaN
129 36.0 0.0 69.0 ... name NaN NaN
130 22.0 0.0 57.0 ... name NaN NaN
131 20.0 0.0 62.0 ... name NaN NaN
[132 rows x 13 columns]
There are a number of missing values in the dataset:
df.isnull().sum() / len(df)
survival 0.015152
alive 0.007576
age_at_heart_attack 0.037879
pe 0.007576
fs 0.060606
epss 0.113636
lvdd 0.083333
wm_score 0.030303
wm_index 0.007576
mult 0.030303
name 0.000000
group 0.166667
alive_at_one 0.439394
dtype: float64
Learner Interface
OptImpute uses the same learner interface as other IAI packages to allow you to properly conduct imputation on data that has been split into training and testing sets.
In this problem, we will use a survival framework and split the data into training and testing:
from interpretableai import iai
X = df.iloc[:, 2:14]
died = [pd.isnull(x) or x == 0 for x in df.iloc[:, 1]]
times = df.iloc[:, 0]
(train_X, train_died, train_times), (test_X, test_died, test_times) = iai.split_data('survival', X, died, times, seed=1)
First, create a learner and set parameters as normal:
lnr = iai.OptKNNImputationLearner(random_seed=1)
Unfitted OptKNNImputationLearner:
random_seed: 1
Note that it is also possible to construct the learners with ImputationLearner
and the method
keyword argument (which can be useful when specifying the method programmatically):
lnr = iai.ImputationLearner(method='opt_knn', random_seed=1)
Unfitted OptKNNImputationLearner:
random_seed: 1
We can then train the imputation learner on the training dataset with fit
:
lnr.fit(train_X)
Fitted OptKNNImputationLearner
The fitted learner can then be used to fill missing values with transform
:
lnr.transform(test_X)
age_at_heart_attack pe fs ... name group alive_at_one
0 72.0 0.0 0.3800 ... name 1.0 0.000000
1 57.0 0.0 0.1600 ... name 1.0 0.000000
2 73.0 0.0 0.3300 ... name 1.0 0.000000
3 85.0 1.0 0.1800 ... name 1.0 1.000000
4 54.0 0.0 0.3000 ... name 2.0 0.001848
5 55.0 0.0 0.2315 ... name 2.0 0.001905
6 65.0 0.0 0.1500 ... name 2.0 0.002333
.. ... ... ... ... ... ... ...
33 64.0 0.0 0.1500 ... name 2.0 0.001378
34 61.0 0.0 0.1800 ... name 2.0 0.001876
35 48.0 0.0 0.1500 ... name 2.0 0.001904
36 65.5 0.0 0.0900 ... name 2.0 0.000978
37 61.0 0.0 0.1400 ... name 2.0 0.013623
38 64.0 0.0 0.2400 ... name 2.0 0.001592
39 57.0 0.0 0.1400 ... name 2.0 0.004699
[40 rows x 11 columns]
We commonly want to impute on the training set right after fitting the learner, so you can combine these two steps using fit_transform
:
lnr.fit_transform(train_X)
age_at_heart_attack pe fs epss ... mult name group alive_at_one
0 71.000000 0.0 0.260 9.000 ... 1.000 name 1.0 0.000000
1 55.000000 0.0 0.260 4.000 ... 1.000 name 1.0 0.000000
2 60.000000 0.0 0.253 12.062 ... 0.788 name 1.0 0.000000
3 68.000000 0.0 0.260 5.000 ... 0.857 name 1.0 0.000000
4 62.000000 0.0 0.230 31.000 ... 0.857 name 1.0 0.000000
5 60.000000 0.0 0.330 8.000 ... 1.000 name 1.0 0.000000
6 46.000000 0.0 0.340 0.000 ... 1.003 name 1.0 0.000000
.. ... ... ... ... ... ... ... ... ...
85 54.000000 0.0 0.430 9.300 ... 0.714 name 2.0 0.002253
86 57.642857 0.0 0.230 19.100 ... 0.710 name 2.0 0.016485
87 57.000000 1.0 0.120 0.000 ... 0.857 name 2.0 0.000282
88 61.000000 1.0 0.190 13.200 ... 0.786 name 2.0 0.000079
89 64.000000 0.0 0.280 5.400 ... 0.714 name 2.0 0.002328
90 69.000000 0.0 0.200 7.000 ... 0.857 name 2.0 0.002100
91 62.000000 0.0 0.150 0.000 ... 0.786 name 2.0 0.001507
[92 rows x 11 columns]
To tune parameters, you can use the standard GridSearch
interface, refer to the documentation on parameter tuning for more information.